SIRT1 and FOXO Mediate Contractile Differentiation of Vascular Smooth Muscle Cells under Cyclic Stretch.

نویسندگان

  • Kai Huang
  • Zhi-Qiang Yan
  • Dan Zhao
  • Si-Guo Chen
  • Li-Zhi Gao
  • Ping Zhang
  • Bao-Rong Shen
  • Hai-Chao Han
  • Ying-Xin Qi
  • Zong-Lai Jiang
چکیده

BACKGROUND/AIMS Physiological mechanical stretch in vivo helps to maintain the quiescent contractile differentiation of vascular smooth muscle cells (VSMCs), but the underlying mechanisms are still unclear. Here, we investigated the effects of SIRT1 in VSMC differentiation in response to mechanical cyclic stretch. METHODS AND RESULTS Rat VSMCs were subjected to 10%-1.25Hz-cyclic stretch in vitro using a FX-4000T system. The data indicated that the expression of contractile markers, including α-actin, calponin and SM22α, was significantly enhanced in VSMCs that were subjected to cyclic stretch compared to the static controls. The expression of SIRT1 and FOXO3a was increased by the stretch, but the expression of FOXO4 was decreased. Decreasing SIRT1 by siRNA transfection attenuated the stretch-induced expression of contractile VSMC markers and FOXO3a. Furthermore, increasing SIRT1 by either treatment with activator resveratrol or transfection with a plasmid to induce overexpression increased the expression of FOXO3a and contractile markers, and decreased the expression of FOXO4 in VSMCs. Similar trends were observed in VSMCs of SIRT1 (+/-) knockout mice. The overexpression of FOXO3a promoted the expression of contractile markers in VSMCs, while the overexpression of FOXO4 demonstrated the opposite effect. CONCLUSION Our results indicated that physiological cyclic stretch promotes the contractile differentiation of VSMCs via the SIRT1/FOXO pathways and thus contributes to maintaining vascular homeostasis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spontaneous activity and stretch-induced contractile differentiation are reduced in vascular smooth muscle of miR-143/145 knockout mice.

AIM Stretch is essential for maintaining the contractile phenotype of vascular smooth muscle cells, and small non-coding microRNAs are known to be important in this process. Using a Dicer knockout model, we have previously reported that microRNAs are essential for stretch-induced differentiation and regulation of L-type calcium channel expression. The aim of this study was to investigate the im...

متن کامل

Resveratrol Induces Vascular Smooth Muscle Cell Differentiation through Stimulation of SirT1 and AMPK

Phenotypic plasticity in vascular smooth muscle cells (VSMC) is necessary for vessel maintenance, repair and adaptation to vascular changes associated with aging. De-differentiated VSMC contribute to pathologies including atherosclerosis and intimal hyperplasia. As resveratrol has been reported to have cardio- protective effects, we investigated its role in VSMC phenotypic modulation. We demons...

متن کامل

Stretch-Sensitive Down-Regulation of the miR-144/451 Cluster in Vascular Smooth Muscle and Its Role in AMP-Activated Protein Kinase Signaling

Vascular smooth muscle cells are constantly exposed to mechanical force by the blood pressure, which is thought to regulate smooth muscle growth, differentiation and contractile function. We have previously shown that the expression of microRNAs (miRNAs), small non-coding RNAs, is essential for regulation of smooth muscle phenotype including stretch-dependent contractile differentiation. In thi...

متن کامل

Integration of signal pathways for stretch-dependent growth and differentiation in vascular smooth muscle.

The vascular smooth muscle phenotype is regulated by environmental factors, such as mechanical forces, that exert effects on signaling to differentiation and growth. We used the mouse portal vein in organ culture to investigate stretch-dependent activation of Akt, ERK, and focal adhesion kinase (FAK), which have been suggested to be involved in the regulation of stretch-dependent protein synthe...

متن کامل

Cilostazol promotes vascular smooth muscles cell differentiation through the cAMP response element-binding protein-dependent pathway.

OBJECTIVE Cilostazol, a potent type 3 phosphodiesterase inhibitor, has recently been found to reduce neointimal formation by inhibiting vascular smooth muscle cell (VSMC) proliferation. The aim of this study is to investigate whether cilostazol exerts an action on phenotypic modulation of VSMCs, another important process in the pathogenesis of neointimal formation. METHODS AND RESULTS Cilosta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology

دوره 37 5  شماره 

صفحات  -

تاریخ انتشار 2015